TYPES A5T5058, A5T5059 N-P-N SILICON TRANSISTORS

BULLETIN NO. DL-S 7011322 MAY 1970

HIGH-VOLTAGE SILECT TRANSISTORS FOR GENERAL PURPOSE AMPLIFIER APPLICATIONS IN LINE-OPERATED CIRCUITS

- Solid-State Relays
- High-Voltage Inverters
- Voltage Regulators
- High-Voltage Indicator and Display Controls

mechanical data

These transistors are encapsulated in a plastic compound specifically designed for this purpose, using a highly mechanized process developed by Texas Instruments. The case will withstand soldering temperatures without deformation. These devices exhibit stable characteristics under high-humidity conditions and are capable of meeting MIL-STD-202C, Method 106B. The transistors are insensitive to light.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

	A5T5058	A5T5059
Collector-Base Voltage	300 V	250 V
Collector-Emitter Voltage (See Note 1)	300 V	250 V
Emitter-Base Voltage	7 V	6 V
Continuous Collector Current	150	mA——
Continuous Device Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)	800	mW
Continuous Device Dissipation at (or below) 25°C Lead Temperature (See Note 3)	1.2	.5 W ——
Continuous Device Dissipation at (or below) 25°C Case-and-Lead Temperature (See Note 4)	4 1.€	6 W —— →
Storage Temperature Range		
Lead Temperature 1/16 Inch from Case for 10 Seconds	26	0°C

- NOTES: 1. These values apply between 0 and 30 mA collector current when the base emitter diode is open-circuited.
 - 2. Derate linearly to 150°C free-air temperature at the rate of 6.4 mW/°C.
 - 3. Derate linearly to 150°C lead temperature at the rate of 10 mW/°C. Lead temperature is measured on the collector lead 1/16 inch from the case.
 - 4. This rating applies with the entire case (including the leads) maintained at 25°C, Derate linearly to 150°C case-and-lead temperature at the rate of 12.8 mW/°C.

[†]Trademark of Texas Instruments

‡U.S. Patent No. 3,439,238

USES CHIP N15

TYPES A5T5058, A5T5059 N-P-N SILICON TRANSISTORS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

PARAMETER		TEGT COLUMN TO THE		A5T5058		A5T5069			
		TEST CONDITIONS			MIN	MAX	MIN	MAX	UNIT
V(BR)CBO	Collector-Base Breakdown Voltage	IC = 100 μA,	IE = 0		300		250		V
V(BR)CEO	Collector-Emitter Breakdown Voltage	Ic = 30 mA,	l _B = 0,	See Note 5	300		250		V
V(BR)EBO	Emitter-Base Breakdown Voltage	I _E = 100 μA,	IC = 0		7		6		V
ІСВО	Collector Cutoff Current	V _{CB} = 100 V,	IE = 0			50		50	nΑ
		V _{CB} = 100 V,	1E = 0,	T _A ≈ 75°C		2		2	μА
IEBO	Emitter Cutoff Current	V _{EB} = 5 V,	IC = 0			10		10	nΑ
hFE	Static Forward Current Transfer Ratio	V _{CE} = 25 V,	IC = 5 mA		10		10		
		V _{CE} = 25 V,	1c = 30 mA	1	35	150	30	150	
		V _{CE} = 25 V,	I _C = 100 mA		35		30		
		V _{CE} = 25 V,	I _C ≈ 30 mA,		10				1
			$T_A = -55^{\circ}C$		10				
VBE	Base-Emitter Voltage	V _{CE} = 25 V,	I _C = 30 mA	See Note 5		0.82		0.82	v
		1 _B = 3 mA,	1 _C = 30 mA	See Note 5		0.85		0.85	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	1 _B = 3 mA,	$I_C = 30 \text{ mA},$	See Note 5		1		1	V
h _{fe}	Small-Signal Common-Emitter	V _{CE} = 25 V,	I= = 10 m A	, f = 20 MHz	1.5	8	1.5		
	Forward Current Transfer Ratio		IC = 10 mA,		1.5		1,5	8	
C _{cb}	Collector-Base Capacitance	V _{CB} = 10 V,	fΕ = 0,	f = 1 MHz,		10		10	pF
				See Note 6					
C _{eb}	Emitter-Base Capacitance	V _{EB} = 0.5 V,	, I _C = 0,	f = 1 MHz,	75		75		
				See Note 6		/5	1	75	pF

NOTES: 5. These parameters must be measured using pulse techniques. $t_W = 300 \ \mu s$, duty cycle $\leq 2\%$.

6. Ccb and Ceb measurements employ a three-terminal capacitance bridge incorporating a guard circuit. The third electrode (emitter or collector, respectively) is connected to the guard terminal of the bridge.

THERMAL INFORMATION

