National Semiconductor is now part of

Texas Instruments.

Search <u>http://www.ti.com/</u> for the latest technical

information and details on our current products and services.

201224

© 2011 National Semiconductor Corporation

M137QML 3-Terminal Adjustable Negative Regulators

December 8, 2010

LM137QML

3-Terminal Adjustable Negative Regulators

General Description

The LM137 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -1.5A over an output voltage range of -37V to -1.2V. These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM137 series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads.

The LM137 serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM137 are ideal complements to the LM117 adjustable positive regulators.

Features

- Output voltage adjustable from -37V to -1.2V
- 1.5A output current guaranteed, -55°C to +150°C
- Line regulation typically 0.01%/V
- Load regulation typically 0.3%
- Excellent thermal regulation, 0.002%/W
- 77 dB ripple rejection
- Excellent rejection of thermal transients
- 50 ppm/°C temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- Standard 3-lead transistor package
- Output is short circuit protected

LM137 Series Packages and Power Capability

Device	Package	Rated Power	Design Load
		Dissipation	Current
1 1 1 2 7	TO-3 (K)	20W	1.5A
LIVITS7	TO-39 (H)	2W	0.5A

Ordering Information

NS Part Number	SMD Part Number	NS Package Number	Package Description
LM137K/883		K02C	2LD Low Profile T0–3 Metal Can
LM137H/883		H03A	3LD T0–39 Metal Can
LM137HPQMLV	5962P9951701VXA 30k rd(Si)	Н0ЗА	3LD T0–39 Metal Can
LM137H MD8		(Note 1)	Bare Die
LM137KG MD8		(Note 1)	Bare Die

Note 1: FOR ADDITIONAL DIE INFORMATION, PLEASE VISIT THE HI REL WEB SITE AT: www.national.com/analog/space/level_die

$$-V_{OUT} = -1.25V\left(1 + \frac{R2}{120}\right) + \left(-I_{ADJ} \times R2\right)$$

 $\dagger C1 = 1 \ \mu F$ solid tantalum or 10 μF aluminum electrolytic required for stability

 $*C2 = 1 \ \mu F$ solid tantalum is required only if regulator is more than 4 from power-supply filter capacitor

Output capacitors in the range of 1 μ F to 1000 μ F of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients

Absolute Maximum Ratings (Note 2)

Power Dissipation (<i>Note 3</i>)	Internally Limited
Input-Output Voltage Differential	40V
Operating Ambient Temperature Range	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$
Operating Junction Temperature Range	$-55^{\circ}C \le T_{J} \le +150^{\circ}C$
Storage Temperature	$-65^{\circ}C \le T_A \le +150^{\circ}C$
Maximum Junction Temperature	150°C
Lead Temperature (Soldering, 10 sec.)	300°C
Minimum Input Voltage	-41.25V
Maximum Power Dissipation (@25°C)	
T0–3	28 Watts
T0–39	2.5 Watts
Thermal Resistance	
θ _{JA}	
T0–3 Metal Can (Still Air)	40°C/W
T0–3 Metal Can (500LF/Min Air Flow)	14°C/W
T0-39 Metal Can (Still Air @ 0.5W)	174°C/W
T0-39 Metal Can (500LF/Min Air Flow @ 0.5W)	64°C/W
θ _{JC}	
T0–3	4°C/W
T0-39 Metal Can (@ 1.0W)	15°C/W
Package Weight (typical)	
T0–3	12,750mg
T0–39 Metal Can	955mg
ESD Rating (Note 6)	4000V

Recommended Operating Conditions

T _A	–55°C ≤ T _A ≤ +125°C
Input Voltage Range	-41.25V to -4.25V

Quality Conformance Inspection

Mil-Std-883, Method 5005 — Group A

Subgroup	Description	Temp (°C)
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55

LM137H 883 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified. V_{IN} = -4.25V, I_L = 8mA, V_{OUT} = V_{Ref}

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
				-1.275	-1.225	V	1
V				-1.3	-1.2	V	2, 3
V Ref	Reference voltage	V _{IN} = -42V		-1.275	-1.225	V	1
		V _{IN} = -41.3V		-1.3	-1.2	V	2, 3
		$V_{OUT} = -1.7V$			3.0	mA	1, 2, 3
1	Minimum Load Current	V _{OUT} = -1.7V, V _{IN} = -11.75V			3.0	mA	1, 2, 3
'Q		$V_{OUT} = -1.7V, V_{IN} = -42V$			5.0	mA	1
		$V_{OUT} = -1.7V, V_{IN} = -41.3V$			5.0	mA	2, 3
Б	Line Regulation	$-42V \le V_{IN} \le -4.25V$		-9.0	9.0	mV	1
Line		$-41.3V \le V_{\rm IN} \le -4.25V$		-23	23	mV	2, 3
	Load Regulation	$5\text{mA} \le \text{I}_{\text{L}} \le 500\text{mA}, \text{V}_{\text{IN}} = -6.25\text{V}$		-25	25	mV	1, 2, 3
R _{Load}		$5\text{mA} \le \text{I}_{\text{L}} \le 500\text{mA}, \text{V}_{\text{IN}} = -14.5\text{V}$		-25	25	mV	1
R _{Load} L		$5mA \le I_L \le 150mA, V_{IN} = -40V$		-25	25	mV	1, 2, 3
I _{Adj}		I _L = 5 mA			100	μA	1, 2, 3
	Adjustment Pin Current	V _{IN} = -42V			100	μA	1
		V _{IN} = -41.3V	Notes Min Max Units -1.275 -1.225 V -1.3 -1.2 N -1.2 -1.3 -1.2 -1.2 -1.3 -1.2 V	μA	2, 3		
	Adjust Pin Current Change vs.	$-42V \le V_{IN} \le -4.25V, I_{L} = 5 \text{ mA}$		-5.0	5.0	μA	1
Δ I _{Adj} / V _{Line}	Line Voltage	$-41.3V \le V_{IN} \le -4.25V, I_{L} = 5 \text{ mA}$		-5.0	5.0	μA	2, 3
Δ I _{Adj} / I _{Load}	Adjust Pin Current Change vs. Load Current	$5 \text{ mA} \le \text{I}_{\text{L}} \le 500 \text{ mA}, \text{V}_{\text{IN}} = -6.5 \text{V}$		-5.0	5.0	μA	1, 2, 3
0	Thermal Degulation	$V_{IN} = -14.5V, I_{L} = 500mA,$ t = 10mS		-5.0	5.0	mV	1
0 _R		$V_{IN} = -14.5V, I_{L} = 5mA,$ t = 10mS		-5.0	5.0	mV	1
θ ^{JC}	Thermal Resistance		(Note 7)		15	°C/W	1
	Current Limit	V _{IN} = -5V		-1.8	-0.5	A	1, 2, 3
'CL		V _{IN} = -40V		-0.65	-0.15	A	1, 2, 3
$ _{Q}$ R_{Line} R_{Load} I_{Adj} $A_{I_{Adj}}$ $A_$				-1.28	-1.22	V	1
° 0				-1.3	-1.2	V	2, 3

AC Parameters

R _R	Ripple Rejection Ratio	$V_{IN} = -6.25V, V_{OUT} = V_{Ref},$ $I_{L} = 125mA, e_{I} = 1V_{RMS},$ F = 120Hz	(Note 5, Note 8)	66		dB	4, 5, 6
----------------	------------------------	--	---------------------	----	--	----	---------

LM137K 883 Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified. V_{IN} = -4.25V, I_L = 8mA, V_{OUT} = V_{Ref}

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
				-1.27 5	-1.22 5	V	1
V				-1.3	-1.2	V	2, 3
• Ref	Reference Voltage	V _{IN} = -42V		-1.27 5	-1.22 5	V	1
		V _{IN} = -41.3V		-1.3	-1.2	V	2, 3
		V _{OUT} = -1.7V			3.0	mA	1, 2, 3
	Minimum Lood Current	V _{OUT} = -1.7V, V _{IN} = -11.75V			3.0	mA	1, 2, 3
Ι _Q		$V_{OUT} = -1.7V, V_{IN} = -42V$			5.0	mA	1
		$V_{OUT} = -1.7V, V_{IN} = -41.3V$			5.0	mA	2, 3
D	Line Devulation	$-42V \le V_{IN} \le -4.25V$		-9.0	9.0	mV	1
R _{Line}	Line Regulation	$-41.3V \le V_{IN} \le -4.25V$		-23	23	mV	2, 3
	Load Regulation	$V_{IN} = -6.25V, 8mA \le I_L \le 1.5A$		-25	25	mV	1, 2, 3
B		$V_{IN} = -14.5V, 8mA \le I_L \le 1.5A$	_	-25	25	mV	1
Load		$V_{IN} = -40V, 8mA \le I_L \le 300 mA$		-25	25	mV	1
$ _{Q} \qquad M$ $ _{R_{Line}} \qquad Lin$ $ _{Adj} \qquad Lc$ $ _{Adj} \qquad Ac$ $ _{Adj} / V_{Line} \qquad Ac$ $ _{Line} \qquad Ac$ $ _{Adj} / V_{Line} \qquad Ac$ $ _{Line} \qquad Ac$		$V_{IN} = -40V, 8mA \le I_L \le 250 mA$		-25	25	mV	2, 3
					100	μA	1, 2, 3
I _{Adj}	Adjustment Pin Current	V _{IN} = -42V			100	μA	1
		V _{IN} = -41.3V			100	μA	2, 3
Δ I _{Adj} / V _{Line}	Adjust Pin Current Change vs.	$-42V \le V_{\rm IN} \le -4.25V$		-5.0	5.0	μA	1
	Line Voltage	$-41.3V \le V_{\rm IN} \le -4.25V$		-5.0	5.0	μA	2, 3
Δ I _{Adj} / I _{Load}	Adjust Pin Current Change vs. Load Current	8 mA \leq I _L \leq 1.5A, V _{IN} = -6.25V		-5.0	5.0	μA	1, 2, 3
V _{Rth}	Thermal Regulation	$V_{IN} = -14.5V, I_{L} = 1.5mA, t = 10mS$		-5.0	5.0	mV	1
		V _{IN} = -14.5V, I _L = 8mA, t = 10mS		-5.0	5.0	mV	1
θ _{JC}	Thermal Resistance		(Note 7)		4.0	°C/W	1
	Current Limit	V _{IN} = -5V		-3.5	-1.5	А	1, 2, 3
CL		$V_{IN} = -40V$		-1.2	-0.24	А	1, 2, 3

AC Parameters

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
R _R	Ripple Rejection Ratio	$\begin{split} V_{\text{IN}} &= -6.25 V, \ V_{\text{OUT}} = V_{\text{Ref}}, \\ f &= 120 \text{Hz}, \ \text{I}_{\text{L}} = 0.5 \text{A}, \\ e_{\text{I}} &= 1 V_{\text{RMS}} \end{split}$	(Note 5, Note 8)	66		dB	4, 5, 6

LM137H RH Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified. (*Note 14*)

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
		V _{IN} = -4.25V, I _L = 5mA		-1.27 5	-1.22 5	V	1
SymbolF V_{OUT} C $V_{R Line}$ L $V_{R Line}$ L $V_{R Load}$ L V_{Rth} T I_{Adj} V $\Delta I_{Adj} / V_{Line}$ L $\Delta I_{Adj} / I_{Load}$ L I_{OS} C V_{OUT} C $Recovery$ C I_Q N V_{Start} N				-1.3	-1.2	V	2, 3
		V _{IN} = -4.25V, I _L = 500mA		-1.27	-1.22	V	1
				5	5	v	· ·
Symbol V _{OUT} V _{R Line} V _{R Load} V _{R th} I _{Adj} Δ I _{Adj} / V _{Line} Δ I _{Adj} / I _{Load} I _{OS}	Output Voltage			-1.3	-1.2	V	2, 3
001				-1.27	-1.22	V	1
		$V_{IN} = -41.25V, I_{L} = 5MA$		5	5	V	0.0
				-1.3	-1.2	V	2, 3
		V = -41 25V J. = 50mA		5	-1.22	V	1
Symbol V_{OUT} $V_{R Line}$ $V_{R Line}$ $V_{R Load}$ V_{Rth} I_{Adj} / V_{Line} $\Delta I_{Adj} / V_{Line}$ $\Delta I_{Adj} / I_{Load}$ I_{OS} V_{OUT} Recovery I_Q V_{Start}				-1.3	-1.2	V	2.3
		$V_{\rm IN} = -41.25 V$ to $-4.25 V$.		-9.0	9.0	mV	1
V _{R Line}	Line Regulation	$I_L = 5mA$		-23	23	mV	2, 3
				-12	12	mV	1
	R Load Regulation	$V_{IN} = -6.25V$, $I_{L} = 5mA$ to 500mA		-24	24	mV	2, 3
V _{R Load}		$V_{IN} = -41.25V, I_{L} = 5mA \text{ to } 50mA$ -		-6.0	6.0	mV	1
				-12	12	mV	2, 3
		$V_{IN} = -6.25V, I_{L} = 5mA \text{ to } 200mA$		-6.0	6.0	mV	1
				-12	12	mV	2, 3
V _{Rth}	Thermal Regulation	$V_{IN} = -14.6V, I_{L} = 500mA$		-5.0	5.0	mV	1
	Adjust Pin Curront	$V_{IN} = -4.25V, I_{L} = 5mA$		25	100	μA	1, 2, 3
'Adj		$V_{IN} = -41.25V, I_{L} = 5mA$		25	100	μA	1, 2, 3
Δ I _{Adj} / V _{Line}	Adjust Pin Current Change vs. Line Voltage	$V_{IN} = -41.25V \text{ to } -4.25V,$ $I_{L} = 5\text{mA}$		-5.0	5.0	μA	1, 2, 3
$\Delta I_{Adj} / I_{Load}$	Adjust Pin Current Change vs. Load Current	$V_{IN} = -6.25V, I_{L} = 5mA \text{ to } 500mA$		-5.0	5.0	μA	1, 2, 3
	Output Short Circuit Current	V _{IN} = -4.25V		0.5	1.8	А	1, 2, 3
'OS		V _{IN} = -40V		0.05	0.5	А	1, 2, 3
				-1.27	-1.22	V	1
		V _{IN} = -4.25V		5	5	•	· ·
V _{OUT}	Output Voltage Recovery After			-1.3	-1.2	V	2, 3
Recovery	Output Short Circuit Current	101		-1.27	-1.22	V	1
		$v_{\rm IN} = -40 v$		-13	-12	V	23
		V = -4.25V		0.2	3.0	ν mΔ	123
1	Minimum Load Current	$V_{\rm IN} = -14.25V$		0.2	3.0	mΔ	123
'Q		$V_{\rm IN} = -41.25V$		1.0	5.0	mΔ	123
<u> </u>				-1 27	-1 22		1, 2, 0
V _{Start}	 Voltage Start-up	$V_{IN} = -4.25V, I_{I} = 500mA$		5	5	V	1
$\begin{array}{c c} V_{\text{R Line}} & I \\ \hline V_{\text{R Load}} & I \\ \hline V_{\text{R th}} & - \\ I_{\text{Adj}} & A \\ \hline \Delta I_{\text{Adj}} / V_{\text{Line}} & A \\ \hline \Delta I_{\text{Adj}} / I_{\text{Load}} & A \\ \hline I_{\text{OS}} & O \\ \hline V_{\text{OUT}} & O \\ \hline I_{\text{Q}} & I \\ \hline V_{\text{Start}} & V \\ \hline V_{\text{OUT}} & O \\ \hline \end{array}$				-1.3	-1.2	V	2, 3
V _{OUT}	Output Voltage	V _{IN} = -6.25V, I _L = 5mA	(Note 9)	-1.3	-1.2	V	2
	•	•		•			

AC Parameters

The following conditions apply, unless otherwise specified.

(Note 14)

, ,							
Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
ΔV _{IN} / ΔV _{OUT}	Ripple Rejection	$V_{IN} = -6.25V$, $I_L = 125mA$, $e_I = 1V_{RMS}$ at 2400Hz		48		dB	9
V _{NO}	Output Noise Voltage	$V_{IN} = -6.25V, I_{L} = 50mA$			120	μV_{RMS}	9
ΔV _{OUT} / ΔV _{IN}	Line Transient Response	$V_{IN} = -6.25V, V_{Pulse} = -1V,$ $I_L = 50mA$			80	mV/V	9
$\Delta V_{O} / \Delta I_{L}$	Load Transient Response	$V_{IN} = -6.25V, I_{L} = 50mA,$ $\Delta I_{L} = 200mA$	(Note 10)		60	mV	9

DC Parameters Drift Values

The following conditions apply, unless otherwise specified.

(Note 14)

Delta calculations performed on QMLV devices at group B, subgroup 5 only.

Symbol	Parameter	Conditions	Notes	Min	Мах	Units	Sub- groups
	Output Voltage	V _{IN} = -4.25V, I _L = 5mA		-0.01	0.01	V	1
Symbol V _{OUT} V _{R Line} I _{Adj}		V _{IN} = -4.25V, I _L = 500mA		-0.01	0.01	V	1
		$V_{IN} = -41.25V, I_{L} = 5mA$		-0.01	0.01	V	1
		V _{IN} = -41.25V, I _L = 50mA		-0.01	0.01	V	1
V _{R Line}	Line Regulation	V_{IN} = -41.25V to -4.25V, I_L = 5mA		-4.0	4.0	mV	1
1	Adjust Pin Current	V _{IN} = -4.25V, I _L = 5mA		-10	10	μA	1
¹ Adj		$V_{IN} = -41.25V, I_{L} = 5mA$		-10	10	μA	1

DC Parameters Post Radiation Limits +25°C

The following conditions apply, unless otherwise specified.

(Note 14)

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
Δ I _{Adj} / V _{Line}	Adjust Pin Current Change vs. Line Voltage	V _{IN} = -41.25V to -4.25V, I _L = 5mA		-20	20	μA	1

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

Note 4: Group "A" sample only, test at all temps.

Note 5: Bench test, refer to (SG)RPI-3-362.

Note 6: Human body model, 100pF discharged through $1.5K\Omega$

Note 7: Guaranteed parameter, not tested.

Note 8: Test at +25°C, guaranteed but not tested at +125°C and -55°C

Note 9: Tested at +125°C ; correlated to +150°C

Note 10: Limit of 0..3mV/mA is equivalent to 60mV

Note 11: $V_{IN} = -41.3V$ at +125°C and -55°C

Note 12: $-41.3V \le V_{IN} \le -4.25V$ at $+125^{\circ}C$ and $-55^{\circ}C$

Note 13: Pre Burn-In stress test per RPI-5-025.

Note 14: Pre and post irradiation limits are identical to those listed under AC and DC electrical characteristics except as listed in the Post Radiation Limits Table. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in Mil-Std-883, Method 1019.5, Condition A.

Schematic Diagram

20122402

Thermal Regulation

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per Watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of V_{OUT} , per Watt, within the first 10 ms after a step of power is applied. The LM137's specification is 0.02%/W, max.

$$\begin{split} LM137, V_{OUT} = -10V \\ V_{IN} - V_{OUT} = -40V \\ I_{IL} = 0A \rightarrow 0.25A \rightarrow 0A \\ Vertical sensitivity, 5 mV/div \end{split}$$

FIGURE 1.

In *Figure 1*, a typical LM137's output drifts only 3 mV (or 0.03% of $V_{OUT} = -10V$) when a 10W pulse is applied for 10 ms. This performance is thus well inside the specification limit of 0.02%/W × 10W = 0.2% max. When the 10W pulse is ended, the thermal regulation again shows a 3 mV step as the

LM137 chip cools off. Note that the load regulation error of about 8 mV (0.08%) is additional to the thermal regulation error. In *Figure 2*, when the 10W pulse is applied for 100 ms, the output drifts only slightly beyond the drift in the first 10 ms, and the thermal error stays well within 0.1% (10 mV).

$$\begin{split} LM137, V_{OUT} &= -10V\\ V_{IN} - V_{OUT} &= -40V\\ I_L &= 0A \rightarrow 0.25A \rightarrow 0A\\ Horizontal sensitivity, 20 ms/div \end{split}$$

Typical Applications

20122409

Full output current not available

at high input-output voltages

*The 10 μF capacitors are optional to improve ripple rejection

Negative Regulator with Protection Diodes

20122413

*When C_L is larger than 20 $\mu F,\, D1$ protects the LM137 in case the input supply is shorted

**When C2 is larger than 10 μF and $-V_{OUT}$ is larger than –25V, D2 protects the LM137 in case the output is shorted

Typical Performance Characteristics (H & K Packages)

Current Limit

Dropout Voltage

Minimum Operating Current

OUTPUT CURRENT (A)

Output Impedance

20122425

20122427

Revision History									
Date Released Revision		Section	Changes						
12/08/2010	A	New Release, Corporate format	3 MDS data sheets converted into one Corp. data sheet format. MNLM137-X, Rev. 0B1, MNLM137- K Rev. 0A0, and MRLM137–X-RH Rev. 2A0. MDS data sheets will be archived.						

Physical Dimensions inches (millimeters) unless otherwise noted

Notes

LM137QML

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com