PHILIPS

AF178

TENTATIVE DATA

R.F. GERMANIUM ALLOY-DIFFUSED TRANSISTOR

Germanium alloy-diffused transistor of the p-n-p type in a metal case with low noise and high gain up to 260 Mc/s, for use in V.H.F. applications as amplifier-, oscillator- and converter circuits.

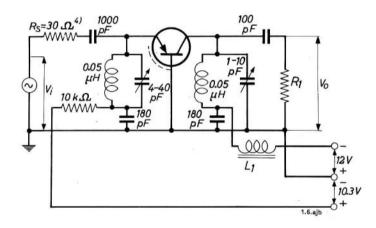
LIMITING VALUES (Absolute max. values)

Collector			
Voltage (base reference)	-V _{CB}	= max.	25 V
Current	$-I_{C}$	= max.	10 mA
Emitter			
Reverse current	$-I_{\rm E}$	= max.	1 mA
Base		27	
Current	-IB	= max.	1 mA
Dissipation			
Total dissipation	Ptot	= max.	110 mW
Temperatures			
Storage temperature	T_{S}	$= -55 {}^{\rm O}{\rm C} {\rm to}$	o + 75 °C
Junction temperature continuous	Тj	= max.	750 °C
incidentally (total dura- tion max. 200 hrs)	Tj (t	= max. = max.	%0 ℃ 200 hrs)
THERMAL DATA	1.		200 112)
Thermal resistance from junction to ambience in free air	K	= max. 0	.4 ^o C/mW

Shield lead

Dimensions in mm TO-12 case			
<u>CHARACTERISTICS</u> at $T_{amb} = 25 \text{ °C}$	i.		
Collector current at $I_E = 0$			
$-V_{CB} = 12 V$	-I _{CBO}	<	10 µA
$-V_{CB} = 25 V$	-I _{CBO}	<	50 µA
Emitter voltage at $I_C = 0$			
$-I_E = 50 \ \mu A$	-V _{EB}	>	0.5 V
Base current			
$-V_{CB} = 12 \text{ V}; -I_{C} = 1 \text{ mA}$	-I _B	<	50 µA
Base voltage			000 M
$-V_{CB} = 12 \text{ V}; -I_{C} = 1 \text{ mA}$	$-v_{BE}$ $-v_{BE}$	> <	220 mV 360 mV
CHARACTERISTICS RANGE VALUE	S FOR	ΕQ	UIP-
MENT DESIGN	Т	amb	= 25 °C
Frequency at which $ h_{fe} = 1$			
$-V_{CB} = 12$ V; $I_E = 1$ mA f_1	= 180 M	lc/s	
Base impedance			
$-V_{CB} = 12 \text{ V}; \text{ I}_E = 1 \text{ mA}$ f = 2 Mc/s	= 10 Ω		
Feedback capacitance			
$-V_{CE} = 12 \text{ V}; -I_{C} = 1 \text{ mA}$ f = 0.45 Mc/s	= 0.8 p	F	

¹) Shield lead


CHARACTERISTICS RANGE VALUES FOR EQUIP-MENT DESIGN (continued)

Current amplification factor

$$-V_{CE} = 12 \text{ V}; -I_{C} = 1 \text{ mA}$$

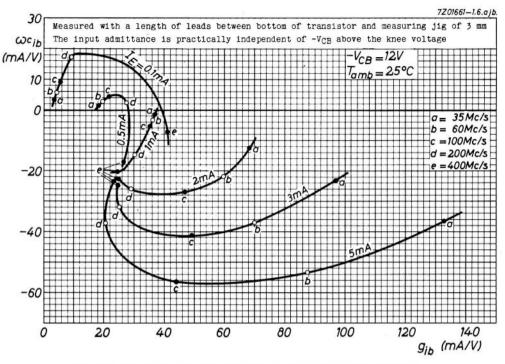
f = 1 kc/s $h_{fe} > 20$

Noise figure

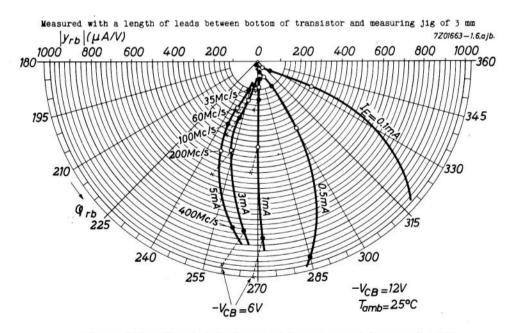
Test circuit for power gain at 200 Mc/s

 R_1 is chosen such that the total impedance $R_{\rm L}$ of the tuned circuit is 2.0 k $\Omega.$

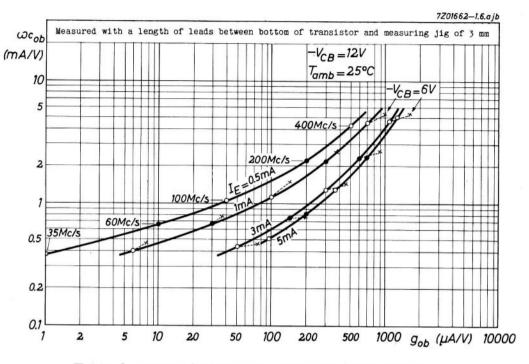
L1 = ferrite bead

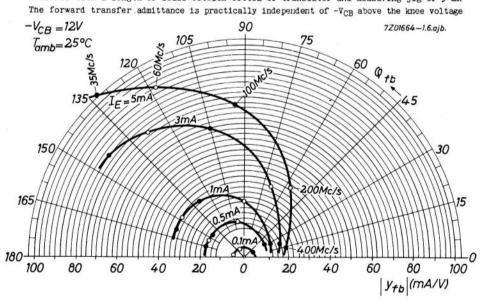

Available power gain at 200 Mc/s in the circuit above

At
$$f = 100 \text{ Mc/s}$$
 $G = 13 \text{ dB} > 10 \text{ dB}$

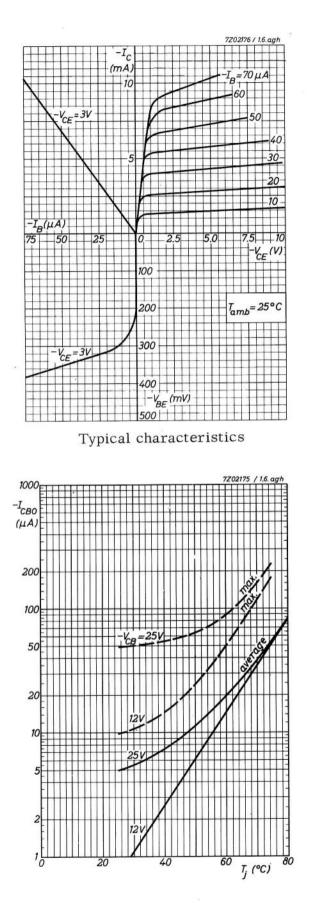

The available power gain is defined as

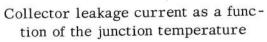
$$G = \frac{V_0^2}{V_i^2} \cdot \frac{4R_s}{R_L} = 0.073 \frac{V_0^2}{V_i^2}$$


3


Typical input admittance in common base circuit

Typical feedback admittance in common base circuit


Typical output admittance in common base circuit



Measured with a length of leads between bottom of transistor and measuring jig of 3 mm

Typical forward transfer admittance in common base circuit

5

