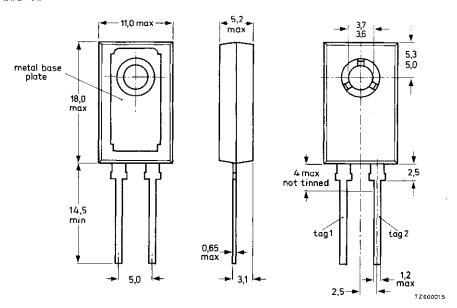
SILICON RECTIFIER DIODES


Plastic-encapsulated rectifier diodes intended for power rectifier applications. Normal and reverse polarity types are available.

QUICK REFERENCE DATA								
		BYX49-300(R)	600(R)	1200(R)			
Repetitive peak reverse voltage	v_{RRM}	max. 300	600	1200	v			
Average forward current		¹ F(AV) max. 6		6	Α			
Non-repetitive peak forward current		I_{FSM}	max,	40	Α			

MECHANICAL DATA (see also page 2)

Dimensions in mm

SOD-38

The exposed metal base-plate is directly connected to tag 1.

Products approved to CECC 50 009-011, available on request

MECHANICAL DATA (continued)

Net mass: 2,5 g

Recommended diameter of fixing screw: 3,5 mm

Torque on screw

when using washer and heatsink compound: min. 0,95 Nm (9,5 kg cm) $$\rm max.~1,5~Nm~(15~kg~cm)$$

Accessories:

supplied with device; washer

available on request: 56316 (mica insulating washer)

POLARITY OF CONNECTIONS

		BYX 49-300 to BYX 49-1200	BYX 49-300R to BYX 49-1200R
Base-pla	ate:	cathode	anode
Tag 1	:	cathode	anode
Tag 2	;	anode	cathode

All information applies to frequencies up to 400 Hz.

RATINGS	Limiting	values i	in	accordance	with	the	Absolute	Maximum	System	(IEC134)
KATHVO	THIRTIE	varues i	LLI	accordance	AA ILII	LIIC	Appoint	Mavillian	System	(12/0103	Ľ

Voltages		BYX49	-300(R)	600(R)	1200(R)	
Continuous reverse voltage	v_R	max.	200	400	800	V
Crest working reverse voltage	v_{RWM}	max.	200	400	800	v
Repetitive peak reverse voltage $(\delta = 0, 01)$	VRRM	max.	300	600	1200	v
Non-repetitive peak reverse voltage (t ≤ 10 ms)	v _{RSM}	max.	300	600	1200	V
Currents				• —		
Average forward current (averaged over any 20 ms period) up to $T_{mb} = 85$ ^{o}C	I _{F(A}	V)	max.	6,0	A	
at $T_{mb} = 120 {}^{\circ}C$	IF(A	V)	max.	3,0	A	
without heatsink; at $T_{amb} = 50$ °C	I _{F(A}	V)	max.	1,1	Α	
Fórward current (d.c.)	$I_{\mathbf{F}}$		max.	9,5	Α	
R.M.S. forward current	I _{F(R}	MS)	max.	9,5	A	
Repetitive peak forward current	I_{FRN}		max.	20	Α	
Non-repetitive peak forward current (t = 10 ms; half sine wave)						
T _j = 150 ^o C prior to surge	I_{FSM}	1	max.	40	Α	
I^2 t for fusing (t = 10 ms)	$_{\rm I}^{2}$ t		max.	8,0	A^2s	
<u>Temperatures</u>						

 T_{stg}

 T_{j}

Storage temperature

Junction temperature

 $^{\rm O}$ C

 $^{\mathrm{o}}\mathrm{C}$

-55 to +125

max.

150

BYX49 SERIES

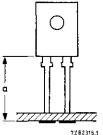
THERMAL RESISTANCE

From junction to mounting base	R _{th j-mb}	=	4,5	oC/W
Transient thermal impedance; t = 1 ms	Z _{th j-mb}	=	0,3	°C/W

Influence of mounting method:

1. Heatsink mounted

From mounting base to heatsink OC/W 1,5 a. with heatsink compound R_{th} mb-h b. with heatsink compound and OC/W 2,7 56316 mica washer R_{th} mb-h c. without heatsink compound R_{th} mb-h d. without heatsink compound; OC/W with 56316 mica washer 5 Rth mb-h

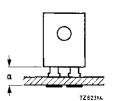

2. Free air operation

The quoted values of $R_{th\ j-a}$ should be used only when no other leads run to the tie-points.

From junction to ambient in free air mounted on a printed circuit board at a = maximum lead length and with a copper laminate

$$a. > 1 cm^2$$

 $b. < 1 cm^2$


$$R_{th j-a} = 50 \, {}^{o}C/W$$

 $R_{th j-a} = 55 \, {}^{o}C/W$

at a lead-length a = 3 mm and with a copper laminate

$$c. > 1 cm^2$$

 $d. < 1 cm^2$

$$R_{th j-a} = 55 \text{ °C/W}$$

 $R_{th j-a} = 60 \text{ °C/W}$

CHARACTERISTICS

Forward voltage

$$I_F = 20 \text{ A}; T_1 = 25 \text{ }^{\circ}\text{C}$$

 v_F

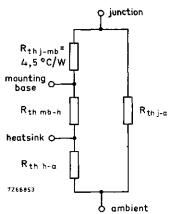
 $2,3 V^{1}$

Reverse current

$$V_R = V_{RWMmax}$$
; $T_i = 125$ °C

 I_R < 200 μ A

SOLDERING AND MOUNTING NOTES


- 1. Soldered joints must be at least 2,5 mm from the scal.
- The maximum permissible temperature of the soldering iron or bath is 270 °C; contact with the joint must not exceed 3 seconds.
- The devices should not be immersed in oil, and few potting resins are suitable for re-encapsulation. Advice on these materials is available on request.
- 4. Leads should not be bent less than 2,5 mm from the seal; exert no axial pull when bending.
- For good thermal contact heatsink compound should be used between base-plate and heatsink.

 $^{^{}m l}$) Measured under pulse conditions to avoid excessive dissipation.

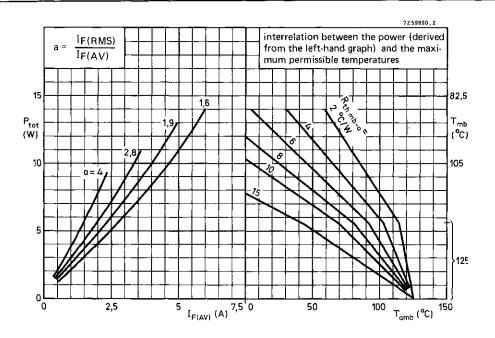
OPERATING NOTES

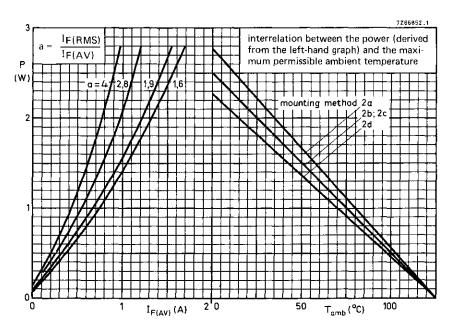
Dissipation and heatsink considerations:

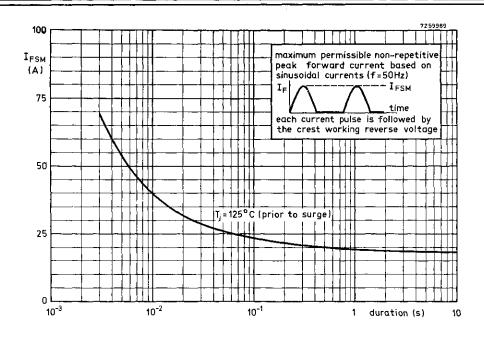
The various components of junction temperature rise above ambient are illustrated below:

The method of using the graph on page 7 is as follows:

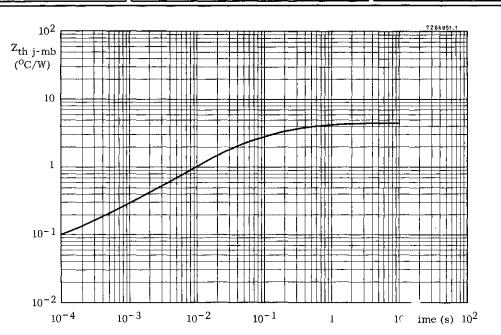
Starting with the curve of maximum dissipation as a function of IF(AV), for a particular current value trace upwards to meet the appropriate form factor curve. Trace horizontally until the $\rm R_{th\ mb-a}$ curve is reached. Finally trace upwards from the $\rm T_{amb}$ scale. The intersection determines the


Rth mb-a required.


The heatsink thermal resistance value $(R_{th\ h-a})$ can now be calculated from:


$$R_{th\ h-a} = R_{th\ mb-a} - R_{th\ mb-h}$$

Any measurement of heatsink temperature should be made immediately adjacent to the device.


The heatsink curves are optimised to allow the junction temperature to run up to 150 o C (T_{imax}) whilst limiting T_{mb} to 125 o C (or less).

