General Description

These devices are a monolithic combination of bipolar and JFET technology producing the industry's first one chip quad JFET switch. A unique circuit technique is employed to maintain a constant resistance over the analog voltage range of $\pm 10 \mathrm{~V}$. The input is designed to operate from minimum TTL levels, and switch operation also ensures a break-before-make action.
These devices operate from $\pm 15 \mathrm{~V}$ supplies and swing a $\pm 10 \mathrm{~V}$ analog signal. The JFET switches are designed for applications where a dc to medium frequency analog signal needs to be controlled.

Features

- Analog signals are not loaded
- Constant "ON" resistance for signals up to $\pm 10 \mathrm{~V}$ and 100 kHz
■ Pin compatible with CMOS switches with the advantage of blow out free handling
- Small signal analog signals to 50 MHz
- Break-before-make action: $t_{\text {OFF }}<t_{\mathrm{ON}}$
- High open switch isolation at $1.0 \mathrm{MHz}:-50 \mathrm{~dB}$
- Low leakage in "OFF" state: $<1.0 \mathrm{nA}$
- TTL, DTL, RTL compatibility
- Single disable pin opens all switches in package on LF11331, LF11332, LF11333
- LF11201 is pin compatible with DG201
Test Circuit and Schematic Diagram

FIGURE 1. Typical Circuit for One Switch

FIGURE 2. Schematic Diagram (Normally Open)

Absolute Maximum Ratings (Note 1)	Power Dissipation (Note 3)		
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/	Molded DIP (N Suffix)	500 mW	
	Cavity DIP (D Suffix)	900 mW	
Distributors for availability and specifications.(Note 2)	Operating Temperature Range		
	LF11201, 2 and LF11331, 2, 3	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
	LF13201, 2 and LF13331, 2, 3	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Reference Voltage $\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{R}} \leq \mathrm{V}_{\mathrm{CC}}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Logic Input Voltage $\quad \mathrm{V}_{\mathrm{R}}-4.0 \mathrm{~V} \leq \mathrm{V}_{\mathbb{1}} \leq \mathrm{V}_{\mathrm{R}}+6.0 \mathrm{~V}$	Soldering Information		
Analog Voltage $\quad \mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{A}} \leq \mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V}$;	N and D Package (10 sec.)	$300{ }^{\circ} \mathrm{C}$	
$\mathrm{V}_{\mathrm{A}} \leq \mathrm{V}_{\text {EE }}+36 \mathrm{~V}$	SO Package:		
Analog Current $\quad\left\|\\|_{\mathrm{A}}\right\|<20 \mathrm{~mA}$	Vapor Phase (60 sec.)	$215{ }^{\circ} \mathrm{C}$ 220	

Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions		LF11331/2/3 LF11201/2			LF13331/2/3 LF13201/2			Units	
				Min	Typ	Max	Min	Typ	Max		
	"ON" Resistance	$\mathrm{V}_{\mathrm{A}}=0, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 10	150	200		150	250	Ω	
					200	300		200	350	Ω	
$\mathrm{R}_{\text {ON }}$ Match	"ON" Resistance Matching	Switch "ON," $\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	20		10	50	Ω	
V_{A}	Analog Range				± 11		± 10	± 11		V	
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})+}$	Leakage Current in "ON" Condition		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.3	5		0.3	10	nA	
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$					3	100		3	30	nA	
$\mathrm{I}_{\text {S(OFF) }}$$\mathrm{I}_{\text {D(OFF) }}$	Source Current in "OFF" Condition Drain Current in "OFF" Condition	Switch "OFF," $\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}$, $V_{D}=-10 \mathrm{~V}$ Switch "OFF," $\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}$, $V_{D}=-10 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.4	5		0.4	10	nA	
					3	100		3	30	nA	
					0.1	5		0.1	10	nA	
					3	100		3	30	nA	
$\mathrm{V}_{\text {INH }}$ $\mathrm{V}_{\text {INL }}$ $\mathrm{I}_{\mathrm{INH}}$ I_{INL}	Logical "1" Input VoltageLogical "0" Input VoltageLogical "1" Input CurrentLogical "0" Input Current	$\begin{aligned} & V_{I N}=5 \mathrm{~V} \\ & V_{I N}=0.8 \end{aligned}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	2.0	3.6		2.0	3.6		V	
						0.8			0.8	V	
						10 25			40 100	$\mu \mathrm{A}$	
						0.1			0.1	$\mu \mathrm{A}$	
						1			1	$\mu \mathrm{A}$	
t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ $t_{\text {ON- }}$ toff $\mathrm{C}_{\mathrm{S} \text { (OFF) }}$ $\mathrm{C}_{\mathrm{D} \text { (OFF) }}$ $\mathrm{C}_{\mathrm{S}(\mathrm{ON})+}$ $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$	Delay Time "ON" Delay Time "OFF" Break-Before-Make Source Capacitance Drain Capacitance Active Source and Drain Capacitance	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$, (Figure 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$, (Figure 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$, (Figure 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Switch "OFF," $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Switch "OFF," $\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Switch "ON," $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$ $\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{array}{\|c\|} \hline 500 \\ 90 \\ 80 \\ 4.0 \\ 3.0 \\ 5.0 \end{array}$			$\begin{gathered} \hline 500 \\ 90 \\ 80 \\ 4.0 \\ 3.0 \\ 5.0 \end{gathered}$		ns ns ns pF pF pF	
$\mathrm{I}_{\text {SO(OFF) }}$ CT SR $I_{\text {DIS }}$	"OFF" Isolation Crosstalk Analog Slew Rate Disable Current	(Figure 4), (Note 5) (Figure 4), (Note 5) (Note 6) (Figure 5), (Note 7)	$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{\|c\|} \hline-50 \\ -65 \\ 50 \\ 0.4 \\ 0.6 \\ \hline \end{array}$	 1.0 1.5		$\begin{array}{\|c} \hline-50 \\ -65 \\ 50 \\ 0.6 \\ 0.9 \end{array}$	$\begin{aligned} & 1.5 \\ & 2.3 \end{aligned}$	dB	
										dB	
										$\mathrm{V} / \mu \mathrm{s}$	
										mA	
										mA	
I_{EE}	Negative Supply Current	All Switches "OFF," $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	5.0		4.3	7.0	mA	
					4.2	7.5		6.0	10.5	mA	
I_{R}	Reference Supply Current	All Switches "OFF," $V_{S}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	4.0		2.7	5.0	mA	
					2.8	6.0		3.8	7.5	mA	
I_{CC}	Positive Supply Current	All Switches "OFF," $\mathrm{V}_{S}= \pm 10 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.5	6.0		7.0	9.0	mA	
					6.3	9.0		9.8	13.5	mA	

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.
Note 2: Refer to RETSF11201X, RETSF11331X, RETSF11332X and RETSF11333X for military specifications.
Note 3: For operating at high temperature the molded DIP products must be derated based on a $+100^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, devices in the cavity DIP are based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and are derated at $\pm 100^{\circ} \mathrm{C} / \mathrm{W}$.

Electrical Characteristics (Note 4) (Continued)

Note 4: Unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$, and limits apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{LF} 11331 / 2 / 3$ and the $\mathrm{LF} 11201 / 2$, $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ for the LF13331/2/3 and the LF13201/2.

Note 5: These parameters are limited by the pin to pin capacitance of the package.
Note 6: This is the analog signal slew rate above which the signal is distorted as a result of finite internal slew rates
Note 7: All switches in the device are turned "OFF" by saturating a transistor at the disable node as shown in Figure 5. The delay time will be approximately equal to the $t_{\text {ON }}$ or $t_{\text {OFF }}$ plus the delay introduced by the external transistor.
Note 8: This graph indicates the analog current at which 1% of the analog current is lost when the drain is positive with respect to the source
Note 9: θ_{JA} (Typical) Thermal Resistance
$\begin{array}{lr}\text { Molded DIP (N) } & 85^{\circ} \mathrm{C} / \mathrm{W} \\ \text { Cavity DIP (D) } & 100^{\circ} \mathrm{C} / \mathrm{W} \\ \text { Small Outline (M) } & 105^{\circ} \mathrm{C} / \mathrm{W}\end{array}$
Connection Diagrams (Top View for SO and Dual-In-Line Packages) (All Switches Shown are For Logical "0")

LF11331/LF13331

LF11333/LF13333

LF11201/LF13201

Connection Diagrams (Top View for SO and Dual-n-Line Packages) (All Switches Shown are For Logical "0") (Continued)

Order Number LF13201D, LF11201D, LF11201D/883, LF13202D, LF11202D, LF11202D/883, LF13331D, LF11331D, LF11331D/883, LF13332D, LF11332D, LF11332D/883, LF13333D, LF11333D or LH11333D/883

See NS Package Number D16C
Order Number LF13201M, LF13202M, LF13331M, LF13332M or LF13333M See NS Package Number M16A
Order Number LF13201N, LF13202N, LF13331N, LF13332N or LF13333N See NS Package Number N16A

Additional Test Circuits

FIGURE 3. $t_{\text {ON }}, t_{\text {OFF }}$ Test Circuit and Waveforms for a Normally Open Switch

FIGURE 4. "OFF" Isolation, Crosstalk, Small Signal Response
Typical Performance Characteristics
"ON" Resistance

"ON" Resistance

"ON" Resistance

Typical Performance Characteristics (Continued)

Switching Times

Crosstalk and "OFF" Isolation vs Frequency Using Test Circuit of Figure 5

Supply Current

Switch Capacitances

Typical Performance Characteristics (Continued)

Slew Rate of Analog Voltage Above Which

 Signal Loading Occurs

Logical "1" Input Bias

Current
 urrent

Analog Current vs Temperature

Application Hints

GENERAL INFORMATION

These devices are monolithic quad JFET analog switches with "ON" resistances which are essentially independent of analog voltage or analog current. The leakage currents are typically less than 1 nA at $25^{\circ} \mathrm{C}$ in both the "OFF"and "ON" switch states and introduce negligible errors in most applications. Each switch is controlled by minimum TTL logic levels at its input and is designed to turn "OFF" faster than it will turn "ON." This prevents two analog sources from being transiently connected together during switching. The switches were designed for applications which require break-before-make action, no analog current loss, medium speed switching times and moderate analog currents.
Because these analog switches are JFET rather than CMOS, they do not require special handling.

LOGIC INPUTS

The logic input (IN), of each switch, is referenced to two forward diode drops (1.4 V at $25^{\circ} \mathrm{C}$) from the reference supply $\left(\mathrm{V}_{\mathrm{R}}\right)$ which makes it compatible with DTL, RTL, and TTL logic families. For normal operation, the logic "0" voltage can range from 0.8 V to -4.0 V with respect to V_{R} and the logic " 1 " voltage can range from 2.0 V to 6.0 V with respect to V_{R}, provided $\mathrm{V}_{\text {IN }}$ is not greater than ($\mathrm{V}_{\mathrm{CC}}-2.5 \mathrm{~V}$). If the input voltage is greater than $\left(\mathrm{V}_{\mathrm{cc}}-2.5 \mathrm{~V}\right)$, the input current will increase. If
the input voltage exceeds 6.0 V or -4.0 V with respect to V_{R}, a resistor in series with the input should be used to limit the input current to less than $100 \mu \mathrm{~A}$.

ANALOG VOLTAGE AND CURRENT

Analog Voltage

Each switch has a constant "ON" resistance (R_{ON}) for analog voltages from ($\mathrm{V}_{\mathrm{EE}}+5 \mathrm{~V}$) to ($\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V}$). For analog voltages greater than ($\mathrm{V}_{\mathrm{cc}}-5 \mathrm{~V}$), the switch will remain ON independent of the logic input voltage. For analog voltages less than $\left(\mathrm{V}_{\mathrm{EE}}+5 \mathrm{~V}\right)$, the ON resistance of the switch will increase. Although the switch will not operate normally when the analog voltage is out of the previously mentioned range, the source voltage can go to either $\left(\mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}\right)$ or $\left(\mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V}\right)$, whichever is more positive, and can go as negative as V_{EE} without destruction. The drain (D) voltage can also go to either $\left(\mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}\right)$ or $\left(\mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V}\right)$, whichever is more positive, and can go as negative as $\left(\mathrm{V}_{\mathrm{cc}}-36 \mathrm{~V}\right)$ without destruction.

Analog Current

With the source (S) positive with respect to the drain (D), the R_{ON} is constant for low analog currents, but will increase at higher currents ($>5 \mathrm{~mA}$) when the FET enters the saturation region. However, if the drain is positive with respect to the source and a small analog current loss at high analog currents (Note 6) is tolerable, a low $\mathrm{R}_{\text {ON }}$ can be maintained for analog currents greater than 5 mA at $25^{\circ} \mathrm{C}$.

Application Hints (Continued)

LEAKAGE CURRENTS

The drain and source leakage currents, in both the ON and the OFF states of each switch, are typically less than 1 nA at $25^{\circ} \mathrm{C}$ and less than 100 nA at $125^{\circ} \mathrm{C}$. As shown in the typical curves, these leakage currents are Dependent on power supply voltages, analog voltage, analog current and the source to drain voltage.

DELAY TIMES

The delay time OFF ($\mathrm{t}_{\mathrm{OFF}}$) is essentially independent of both the analog voltage and temperature. The delay time ON $\left(\mathrm{t}_{\mathrm{ON}}\right)$ will decrease as either $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{A}}\right)$ decreases or the temperature decreases.

POWER SUPPLIES

The voltage between the positive supply (V_{CC}) and either the negative supply (V_{EE}) or the reference supply $\left(\mathrm{V}_{\mathrm{R}}\right)$ can be as much as 36 V . To accommodate variations in input logic reference voltages, V_{R} can range from V_{EE} to $\left(\mathrm{V}_{\mathrm{CC}}-4.5 \mathrm{~V}\right)$. Care should be taken to ensure that the power supply leads for the device never become reversed in polarity or that the device is never inadvertently installed backwards in a test socket. If
one of these conditions occurs, the supplies would zener an internal diode to an unlimited current; and result in a destroyed device.

SWITCHING TRANSIENTS

When a switch is turned OFF or ON, transients will appear at the load due to the internal transient voltage at the gate of the switch JFET being coupled to the drain and source by the junction capacitances of the JFET. The magnitude of these transients is dependent on the load. A lower value R_{L} produces a lower transient voltage. A negative transient occurs during the delay time ON, while a positive transient occurs during the delay time OFF. These transients are relatively small when compared to faster switch families.

DISABLE NODE

This node can be used, as shown in Figure 5, to turn all the switches in the unit off independent of logic inputs. Normally, the node floats freely at an internal diode drop $(\approx 0.7 \mathrm{~V})$ above V_{R}. When the external transistor in Figure 5 is saturated, the node is pulled very close to V_{R} and the unit is disabled. Typically, the current from the node will be less than 1 mA . This feature is not available on the LF11201 or LF11202 series.

FIGURE 5. Disable Function

Typical Applications

Typical Applications (Continued)

Typical Applications (Continued)

Typical Applications (Continued)

Typical Applications (Continued)

DS005667-49

Typical Applications (Continued)

DS005667-51

Typical Applications (Continued)

\square

Physical Dimensions inches (millimeters) unless otherwise noted

Order Number LF11201D, LF11201D/883, LF13201D, LF11202D, LF11202D/883, LF13202D, LF11331D, LF11331D/883, LF13331D, LF11332D, LF11332D/883, LF13332D, LF11333D, LF11333D/883 or LF13333D NS Package Number D16C

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Order Number LF13201N, LF13202N, LF13331N, LF13332N or LF13333N
NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-
CONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 8585	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 7832	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 9358		
www.national.com	Italiano Tel: +49 (0) 1 80-534 1680		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

