SYNCHRONOUS PRESETTABLE BINARY COUNTER

MC74F161A MC74F163A

SYNCHRONOUS PRESETTABLE BINARY COUNTER

FAST ${ }^{\text {™ }}$ SHOTTKY TTL

LOGIC SYMBOL

$V_{C C}=\operatorname{PIN} 16$

$$
\text { GND = PIN } 8
$$

*MR for MC74F161A
*SR for MC74F163A

MC74F161A•MC74F163A

LOGIC DIAGRAM

NOTE:
This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

FUNCTIONAL DESCRIPTION

The MC74F161A and MC74F163A count in modulo-16 binary sequence. From state $15(\mathrm{HHHH})$ they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the MC74F161A) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset (MC74F161A), synchronous reset (MC74F163A), parallel load, count-up and hold. Five control inputs - Master Reset (MR, MC74F161A), Synchronous Reset (SR, MC74F163A), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET) - determine the mode of operation, as shown in the Function Table. A LOW signal on MR overrides
all other inputs and asynchronously forces all outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data $\left(\mathrm{P}_{\mathrm{n}}\right)$ inputs to be loaded into the flip-flops on the next rising edge of CP. With PE and MR (MC74F161A) or SR (MC74F163A) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.
The MC74F161A and MC74F163A use D-type edge-triggered flip-flops and changing the SR, PE, CEP, and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP , are observed.

MC74F161A • MC74F163A

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	74	4.5	5.0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	74	0	25	70	${ }^{\circ} \mathrm{C}$
IOH°	Output Current - High	74			-1.0	mA
IOL^{2}	Output Current - Low	74			20	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Inp All Inputs	HIGH Voltage for
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V	Guaranteed Inp All Inputs	LOW Voltage for
V_{IK}	Input Clamp Diode Voltage				-1.2	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}$	-18 mA
V_{OH}	Output HIGH Voltage	74	2.5	3.4		V	$\mathrm{l}^{\mathrm{OH}}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$
		74	2.7	3.4		V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V OL	Output LOW Voltage			0.35	0.5	V	$\mathrm{IOL}=20 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
${ }^{\text {I }} \mathrm{H}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
					0.1	mA	$\mathrm{VCC}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$	
IIL	Input LOW Current Data, CEP. Clock PE, CET, SR				$\begin{array}{r} -0.6 \\ -1.2 \end{array}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	
Ios	Output Short Circuit Current (Note 2)		-60		-150	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	
ICC	Power Supply Current			37	55	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$	

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in state 15. To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. The TC output is subject to decoding spikes due to internal race conditions and is there-
fore not recommended for use as a clock or asynchronous reset for flip-flops, counters, or registers.

Logic Equations:
Count Enable $=$ CEP $\cdot \mathrm{CET} \cdot \overline{\mathrm{PE}}$
$T C=Q_{0} \cdot Q_{1} \cdot Q_{2} \cdot Q_{3} \cdot C E T$

AC CHARACTERISTCS

Symbol	Parameter					Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } \mathbf{7 0 ^ { \circ } \mathrm { C }} \\ \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	
$\mathrm{f}_{\max }$	Maximum Count Frequency	100		90		MHz
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Count CP to Q_{n} (PE Input HIGH)	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 6.0 \\ 10 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 7.0 \\ 11 \end{gathered}$	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay CP to Q_{n} (PE Input LOW)	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	
$\begin{aligned} & \text { tPLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay CP to TC	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay CET to TC	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	ns
tPHL	Propagation Delay MR to Q_{n} (MC74F161A)	5.5	12	5.5	13	ns
tPHL	Propagation Delay MR to TC (MC74F161A)	4.5	10.5	4.5	11.5	ns

AC OPERATING REQUIREMENTS

Mfax is a tr	demark of Motorola, Inc.	$\begin{gathered} \hline 74 \mathrm{~F} \\ \hline \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{C}}=+5.0 \mathrm{~V} \end{gathered}$		74F		
				$\begin{array}{r} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \end{array}$	$\begin{aligned} & \text { to } 70^{\circ} \mathrm{C} \\ & V \pm 10 \% \end{aligned}$	
Motorola re ghramabobde r	serves the right to make changes without further nd garding the suitabilifarfarspteducts for any particula			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ torola makes no warranty, repr		esentation or ne applladtion
totypical" pa	Tुण्रuप्प्या पांप्यां ameteps Which may bor provided in Motorola data sh authlotizieaqo Hust harcbonblonents in systems intend e,pr figrey other application in which the failure of should Buyer purchase مruse Motorola products fo	tatllidivibity, ime adin! without in eets ario/or specifications can 2 ding "Ey.picals" hust be validate to patentrighto her the right ed for ${ }^{2}$ sUrgical inplant into the b the Meṭorola product could cre any such unintended مrenauth				taldamayes. ns and actual y custposer's lot designed, ed to support pjury or death hdemnifyand
thtethded, or Pr ${ }^{\text {Esustain lif }}$ mayoccur						
$\begin{aligned} & \text { bot } \text { Motoro } \\ & \text { and reason } \\ & \text { ishaluthorize } \end{aligned}$		and distributor y, any oclaim of s negligent red	harmless agai personal injury arding the desi			id expenses, nintendesd or Motorolă and
(4) laje regis	ekeddriaheendikSidfoblerordla, Inc. Motorola, Inc. is	an Eqzial Oppo	tunity/Affirmatio	e ActiaroEmploy		
$\mathrm{th}^{(L \mathrm{~L}}$)	PE or SR to CP	0		0		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW CEP or CET to CP	$\begin{gathered} \hline 11 \\ 5.0 \end{gathered}$		$\begin{gathered} 11.5 \\ 5.0 \end{gathered}$		ns
$\begin{aligned} & \hline \mathrm{th}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{th}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW CEP or CET to CP	0		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		
$\begin{aligned} & t_{w}(\mathrm{H}) \\ & t_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width (Load) HIGH or LOW	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & t_{w}(\mathrm{H}) \\ & t_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width (Count) HIGH or LOW	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \hline 4.0 \\ & 7.0 \end{aligned}$		ns
$t_{w}(\mathrm{~L})$	MR Pulse Width, LOW (MC74F161A)	5.0		5.0		ns
$t_{\text {rec }}$	Recovery Time, MR to CP (MC74F161A)	6.0		6.0		

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

Customer Focus Center: 1-800-521-6274
Mfax ${ }^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 1-602-244-6609 ~}$
Motorola Fax Back System - US \& Canada ONLY 1-800-774-1848

- http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

