

MMIC SURFACE MOUNT

Monolithic Amplifier

ERA-2SM+

50Ω DC to 6 GHz

FEATURES

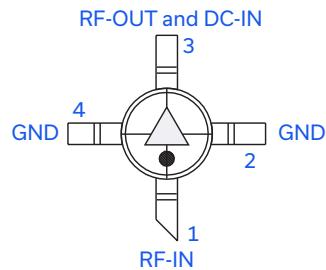
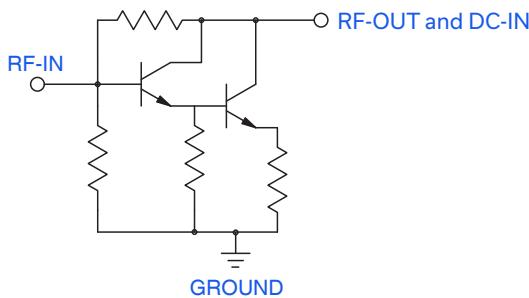
- DC-6 GHz
- Single Voltage Supply
- Internally Matched to 50 Ohms
- Unconditionally Stable
- Low Performance Variation Over Temperature
- Transient Protected
- Aqueous washable
- Protected By US Patent 6,943,629

Generic photo used for illustration purposes only

CASE STYLE: WW107

+RoHS Compliant

The +Suffix identifies RoHS Compliance.
See our website for methodologies and qualifications



APPLICATIONS

- Cellular/ PCS/ 3G Base Station
- CATV, Cable Modem & DBS
- Fixed Wireless & WLAN
- Microwave Radio & Test Equipment

PRODUCT OVERVIEW

ERA-2SM+ (RoHS compliant) is a wideband amplifier offering high dynamic range. It has repeatable performance from lot to lot. It is enclosed in a Micro-X package. ERA-2SM+ uses Darlington configuration and is fabricated using InGaP HBT technology. Expected MTTF is 8,000 years at 85°C case temperature.

SIMPLIFIED SCHEMATIC AND PIN DESCRIPTION

Function	Pin Number	Description
RF-IN	1	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
RF-OUT and DC-IN	3	RF output and bias pin. DC voltage is present on this pin; therefore a DC blocking capacitor is necessary for proper operation. An RF choke is needed to feed DC bias without loss of RF signal due to the bias connection, as shown in "Recommended Application Circuit".
GND	2,4	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.

REV. R
ECO-024491
ERA-2SM+
MCL-NY
250211

Mini-Circuitswww.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

PAGE 1 OF 4

MMIC SURFACE MOUNT

Monolithic Amplifier

ERA-2SM+

Mini-Circuits

50Ω DC to 6 GHz

ELECTRICAL SPECIFICATIONS AT +25°C AND 40 mA UNLESS NOTED OTHERWISE

Parameter	Conditions (GHz)	Min.	Typ.	Max.	Units	Cpk
Frequency Range ¹		DC		6	GHz	
Gain	0.01	15.4	16.4	17.3	dB	≥ 1.5
	0.1	15.4	16.4	17.3		
	1		15.8			
	2	13.7	14.9	16.5		
	3		13.9			
	4	11.6	12.5	14.6		
Magnitude of Gain Variation versus Temperature (values are negative)	6		10.7	—	dB/°C	
	0.1		.0025	.005		
	1		.003	.006		
	2		.0035	.007		
	3		.0045	.009		
	4		.0045	.009		
Input Return Loss	6		.006	.011	dB	
	0.1		30			
	3		25			
Output Return Loss	6		22		dB	
	0.1		25			
	3		16			
Reverse Isolation	6		14		dB	
	0.1		20			
	3	18				
Output Power @ 1 dB Compression	0.1		+13.1		dBm	≥ 1.33
	2		+11	+13		
	4		+11			
Saturated Output Power (at 3 dB Compression)	0.1		+14		dBm	
	2		+13			
	4		+12			
Output IP3	0.1	+25	+29		dBm	≥ 1.33
	2	+25	+29			
	4	+20	+25			
Noise Figure	0.1		3.2	5	dB	≥ 1.33
	2		3.3	5.3		
	4		3.4	5.5		
Group Delay	2		80		psec	
Recommended Device Operating Current			40		mA	
Device Operating Voltage		+3.20	+3.4	+3.6	V	≥ 1.5
Device Voltage Variation vs. Temperature at 40 mA			-2.5		mV/°C	
Device Voltage Variation vs. Current at +25°C			8.1		mV/mA	
Thermal Resistance, junction-to-case ²			160		°C/W	

1. Guaranteed specification DC-6 GHz. Low frequency cut off determined by external coupling capacitors.

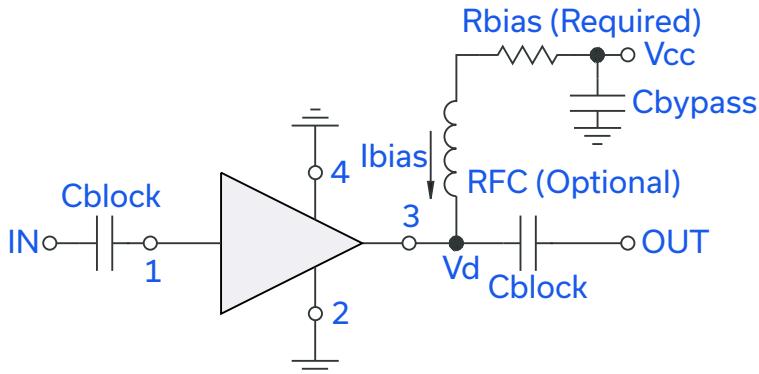
2. Case is defined as ground leads.

ABSOLUTE MAXIMUM RATINGS

Parameter	Ratings
Operating Temperature ³	-45°C to +85°C
Storage Temperature	-65°C to +150°C
Operating Current	75 mA
Power Dissipation	330 mW
Input Power	+15 dBm

3. Based on typical case temperature rise 5°C above ambient.

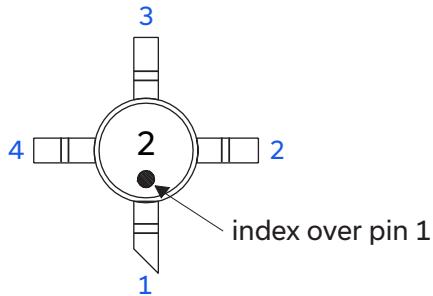
Permanent damage may occur if any of these limits are exceeded. These ratings are not intended for continuous normal operation.


MMIC SURFACE MOUNT

Monolithic Amplifier

ERA-2SM+

50Ω DC to 6 GHz


RECOMMENDED APPLICATION CIRCUIT

R BIAS	
V_{cc}	"1%" Res. Values (ohms) for Optimum Biasing
7	88.7
8	113
9	137
10	162
11	187
12	213
13	237
14	261
15	287
16	309
17	332
18	365
19	392

Test Board includes case, connectors, and components (in bold) soldered to PCB

PRODUCT MARKING

Markings in addition to model number designation may appear for internal quality control purposes.

MMIC SURFACE MOUNT

Monolithic Amplifier

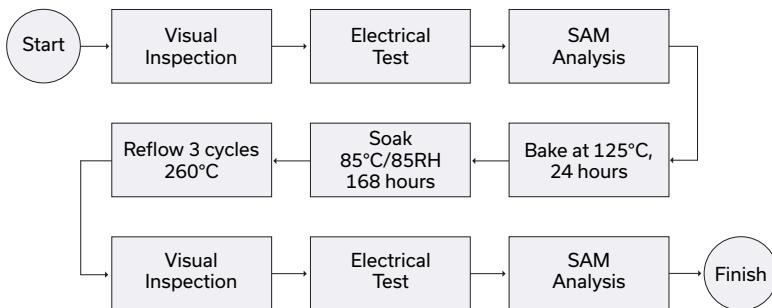
ERA-2SM+

50Ω DC to 6 GHz

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASHBOARD. [CLICK HERE](#)

Performance Data & Graphs	Data Table Swept Graphs S-Parameter (S2P Files) Data Set (.zip file)
Case Style	WW107 Plastic micro-x package, lead finish: Matte-tin
Tape & Reel Standard quantities available on reel	F4 7" reels with 20, 50, 100, 200, 500 or 1K devices
Suggested Layout for PCB Design	PL075
Evaluation Board	TB-408-2+
Environmental Ratings	ENV08T2

ESD RATING


Human Body Model (HBM): Class 1A (250 V to < 500 V) in accordance with ANSI/ESD STM 5.1 - 2001
 Machine Model (MM): Class M1 (< 100 V) in accordance with ANSI/ESD STM 5.2 - 1999

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDECJ-STD-020C

No.	Test Required	Condition	Standard	Quantity
1	Visual Inspection	Low Power Microscope Magnification 40x	MIP-IN-0003 (MCT spec)	45 units
2	Electrical Test	Room Temperature	SCD (MCL spec)	45 units
3	SAM Analysis	Less than 10% growth in term of delamination	J-Std-020C (Jedec Standard)	45 units
4	Moisture Sensitivity Level 1	Bake at 125°C for 24 hours Soak at 85°C/85%RH for 168 hours Reflow 3 cycles at 260°C peak	J-Std-020C (Jedec Standard)	45 units

MSL TEST FLOW CHART

NOTES

- Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- Electrical specifications and performance data contained in this specification document are based on Mini-Circuits' applicable established test performance criteria and measurement instructions.
- The parts covered by this specification document are subject to Mini-Circuits' standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

Mini-Circuits®