

Silicon Power Transistors

MJ15023 (PNP), MJ15025 (PNP)

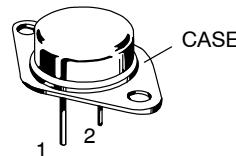
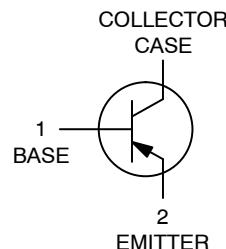
The MJ15023 and MJ15025 are power transistors designed for high power audio, disk head positioners and other linear applications.

Features

- High Safe Operating Area
- High DC Current Gain
- Complementary to MJ15022 (NPN), MJ15024 (NPN)
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage MJ15023 MJ15025	V_{CEO}	200 250	Vdc
Collector-Base Voltage MJ15023 MJ15025	V_{CBO}	350 400	Vdc
Emitter-Base Voltage	V_{EBO}	5	Vdc
Collector-Emitter Voltage	V_{CEX}	400	Vdc
Collector Current – Continuous (Note 1)	I_C	16	Adc
Collector Current – Peak (Note 1)	I_{CM}	30	Adc
Base Current – Continuous	I_B	5	Adc
Total Device Dissipation @ $T_C = 25^\circ\text{C}$ Derate above 25°C	P_D	250 1.43	W W/ $^\circ\text{C}$
Operating and Storage Junction Temperature Range	T_J, T_{stg}	-65 to +200	$^\circ\text{C}$



Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width = 5 ms, Duty Cycle $\leq 10\%$.

THERMAL CHARACTERISTICS


Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.70	$^\circ\text{C}/\text{W}$

16 AMPERES SILICON POWER TRANSISTORS 200 – 250 VOLTS, 250 WATTS

TO-204 (TO-3)
CASE 1-07
STYLE 1

MARKING DIAGRAM

MJ1502x = Device Code
 x = 3 or 5
 G = Pb-Free Package
 A = Assembly Location
 Y = Year
 WW = Work Week
 MEX = Country of Origin

ORDERING INFORMATION

Device	Package	Shipping
MJ15023G	TO-204 (Pb-Free)	100 Units / Tray
MJ15025G	TO-204 (Pb-Free)	100 Units / Tray

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, [BRD8011/D](#).

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MJ15023 (PNP), MJ15025 (PNP)

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (Note 2) ($I_C = 100 \text{ mA}_\text{dc}$, $I_B = 0$) MJ15023 MJ15025	$V_{\text{CEO}(\text{sus})}$	200 250	— —	—
Collector Cutoff Current ($V_{\text{CE}} = 200 \text{ V}_\text{dc}$, $V_{\text{BE}(\text{off})} = 1.5 \text{ V}_\text{dc}$) MJ15023 ($V_{\text{CE}} = 250 \text{ V}_\text{dc}$, $V_{\text{BE}(\text{off})} = 1.5 \text{ V}_\text{dc}$) MJ15025	$I_{\text{CE}(\text{off})}$	— —	250 250	μA_dc
Collector Cutoff Current ($V_{\text{CE}} = 150 \text{ V}_\text{dc}$, $I_B = 0$) MJ15023 ($V_{\text{CE}} = 200 \text{ V}_\text{dc}$, $I_B = 0$) MJ15025	I_{CEO}	— —	500 500	μA_dc
Emitter Cutoff Current ($V_{\text{CE}} = 5 \text{ V}_\text{dc}$, $I_B = 0$) Both	I_{EBO}	—	500	μA_dc

SECOND BREAKDOWN

Second Breakdown Collector Current with Base Forward Biased ($V_{\text{CE}} = 50 \text{ V}_\text{dc}$, $t = 0.5 \text{ s}$ (non-repetitive)) ($V_{\text{CE}} = 80 \text{ V}_\text{dc}$, $t = 0.5 \text{ s}$ (non-repetitive))	$I_{\text{S/b}}$	5 2	— —	A_dc
---	------------------	--------	--------	----------------------

ON CHARACTERISTICS

DC Current Gain ($I_C = 8 \text{ A}_\text{dc}$, $V_{\text{CE}} = 4 \text{ V}_\text{dc}$) ($I_C = 16 \text{ A}_\text{dc}$, $V_{\text{CE}} = 4 \text{ V}_\text{dc}$)	h_{FE}	15 5	60 —	—
Collector-Emitter Saturation Voltage ($I_C = 8 \text{ A}_\text{dc}$, $I_B = 0.8 \text{ A}_\text{dc}$) ($I_C = 16 \text{ A}_\text{dc}$, $I_B = 3.2 \text{ A}_\text{dc}$)	$V_{\text{CE}(\text{sat})}$	— —	1.4 4.0	V_dc
Base-Emitter On Voltage ($I_C = 8 \text{ A}_\text{dc}$, $V_{\text{CE}} = 4 \text{ V}_\text{dc}$)	$V_{\text{BE}(\text{on})}$	—	2.2	V_dc

DYNAMIC CHARACTERISTICS

Current-Gain – Bandwidth Product ($I_C = 1 \text{ A}_\text{dc}$, $V_{\text{CE}} = 10 \text{ V}_\text{dc}$, $f_{\text{test}} = 1 \text{ MHz}$)	f_T	4	—	MHz
Output Capacitance ($V_{\text{CB}} = 10 \text{ V}_\text{dc}$, $I_E = 0$, $f_{\text{test}} = 1 \text{ MHz}$)	C_{ob}	—	600	pF

2. Pulse Test: Pulse Width = 300 μs , Duty Cycle $\leq 2\%$.

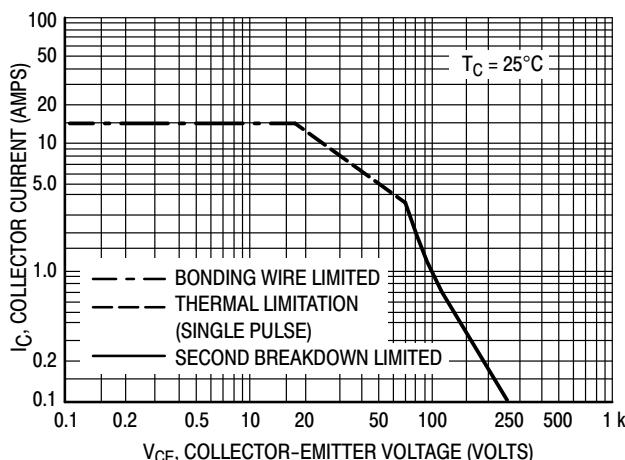


Figure 1. Active-Region Safe Operating Area

There are two limitations on the powerhandling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{\text{CE}}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_{\text{J}(\text{pk})} = 200^\circ\text{C}$; T_C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

MJ15023 (PNP), MJ15025 (PNP)

TYPICAL CHARACTERISTICS

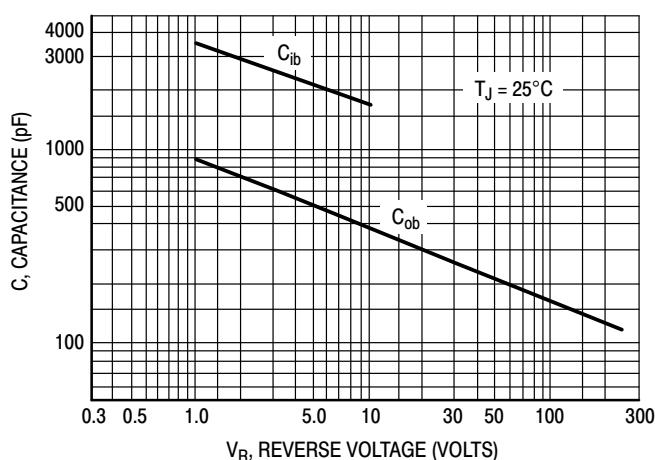


Figure 2. Capacitances

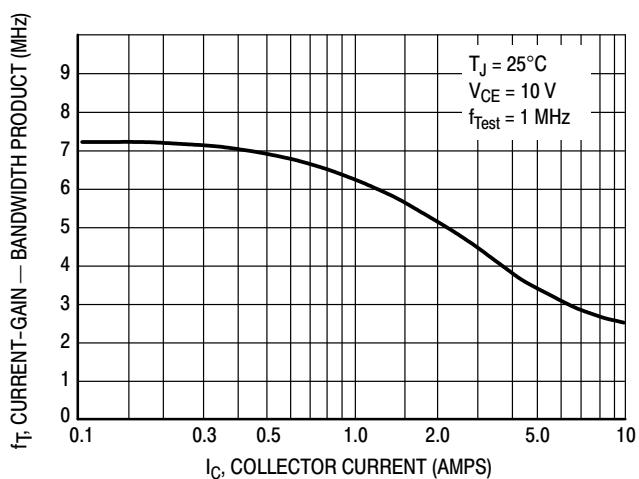


Figure 3. Current-Gain – Bandwidth Product

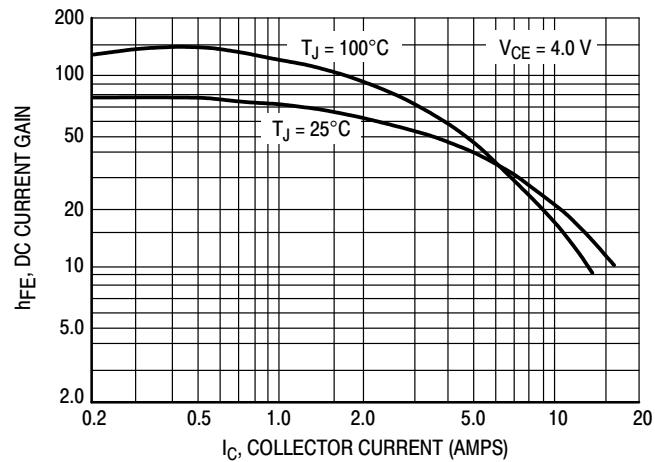
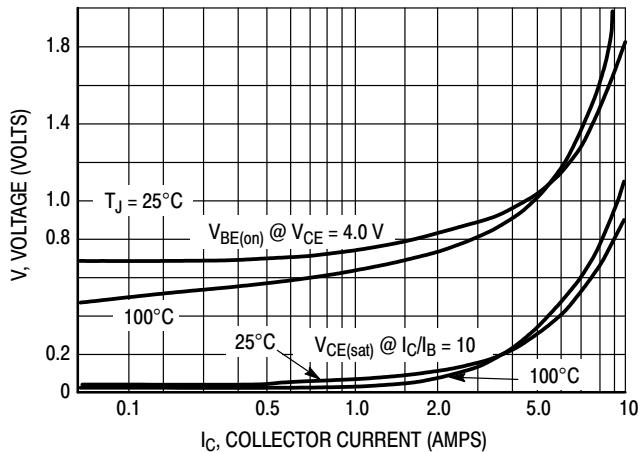
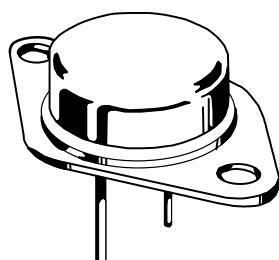
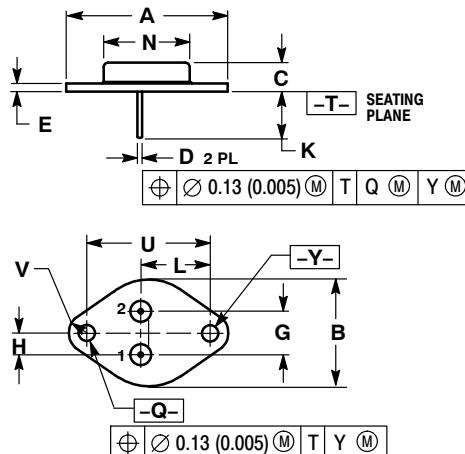


Figure 4. DC Current Gain


Figure 5. “On” Voltages

SCALE 1:1

TO-204 (TO-3)
CASE 1-07
ISSUE Z

DATE 10 MAR 2000

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. ALL RULES AND NOTES ASSOCIATED WITH REFERENCED TO-204AA OUTLINE SHALL APPLY.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	1.550	REF	39.37	REF
B	---	1.050	---	26.67
C	0.250	0.335	6.35	8.51
D	0.038	0.043	0.97	1.09
E	0.055	0.070	1.40	1.77
G	0.430	BSC	10.92	BSC
H	0.215	BSC	5.46	BSC
K	0.440	0.480	11.18	12.19
L	0.665	BSC	16.89	BSC
N	---	0.830	---	21.08
Q	0.151	0.165	3.84	4.19
U	1.187	BSC	30.15	BSC
V	0.131	0.188	3.33	4.77

STYLE 1:
PIN 1. BASE
2. Emitter
CASE: COLLECTOR

STYLE 2:
PIN 1. BASE
2. COLLECTOR
CASE: Emitter

STYLE 3:
PIN 1. GATE
2. SOURCE
CASE: DRAIN

STYLE 4:
PIN 1. GROUND
2. INPUT
CASE: OUTPUT

STYLE 5:
PIN 1. CATHODE
2. EXTERNAL TRIP/DELAY
CASE: ANODE

STYLE 6:
PIN 1. GATE
2. Emitter
CASE: COLLECTOR

STYLE 7:
PIN 1. ANODE
2. OPEN
CASE: CATHODE

STYLE 8:
PIN 1. CATHODE #1
2. CATHODE #2
CASE: ANODE

STYLE 9:
PIN 1. ANODE #1
2. ANODE #2
CASE: CATHODE

DOCUMENT NUMBER:	98ASB42001B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	TO-204 (TO-3)	PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales

